
Indexing inexact proximity search with
distance regression in pivot space

Ole Edsberg Magnus Lie Hetland

Department of Computer and Information Science
Norwegian University of Science and Technology

Similarity Search and Applications, 2010



The problem

Our task: Speed up proximity search in cases where:
I Distance calculation is expensive.
I Distance-based indexing is needed, because the contents

of the data objects cannot be used in the index.
I Some search inexactness is acceptable, meaning we are

allowed to trade som search accuracy in return for reduced
search computation cost.

Our contribution: A new indexing scheme that in some cases
provides better computation / accuracy trade-offs than the
competition. It also has some draw-backs.



Related work

E. Chávez, K. Figueroa, and G. Navarro.
Effective proximity retrieval by ordering permutations.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(9):1647–1658, 2008.

Takeaway:
I How to perform inexact search by ordering the database

according to promise value function.
I A specific promise value function, which we use as a

baseline in our experiments.
I Experimental setup.



Pivot space

Pivot set:
P = (p1,p2, . . . ,pm)

Mapping object o to pivot space.

Φ(o) = (d(o,p1),d(o,p2), . . . ,d(o,pm))



The baseline: Permutation based promise values

The promise value for indexed object u with respect to query q
is the correlation (rank correlation coefficient, Spearman’s ρ)
between the ordering permutation of Φ(u) and that of Φ(q).



What makes a good promise value function?



Two ideas for promise value functions

Distance estimate
d̂(u,q)

Probability of inclusion

Pr(d(u,q) ≤ r)



Uncertainty in distance estimates

d̂(u,q)

distance to query

pr
ob

ab
ili

ty
de

ns
ity



Should red or blue object be visited first?

r

distance to query

pr
ob

ab
ili

ty
de

ns
ity



Should red or blue object be visited first?

r

distance to query

pr
ob

ab
ili

ty
de

ns
ity



Linear model of distance for indexed object u

d(u,q) = β〈u,0〉 +
m∑

i=1

β〈u,i〉d(q,pi) + εu ,



Regression-based index (one model per object!)

With n objects to index and m pivots, an n × (m + 1) matrix:
β̂〈u1,0〉, β̂〈u1,1〉, . . . , β̂〈u1,m〉
β̂〈u2,0〉, β̂〈u2,1〉, . . . , β̂〈u2,m〉

. . .

β̂〈un,0〉, β̂〈un,1〉, . . . , β̂〈un,m〉



I The coefficients can be discretized to save space.
I Plus 2n + 2 additional values if we want probabilities.



Building the index

1. Select n′ training queries from the objects to be indexed.
2. For each training query q′, calculate Φ(q′) .
3. For each object to be indexed u:

3.1 For each training query q′, calculate d(u,q′).
3.2 Solve the least squares linear regression problem to find

the m + 1 coefficients βu.
3.3 Store the coefficients in the index.
3.4 If we want probabilities, also store σ̂u, the estimated

standard deviation of εu:

σ̂u =

√∑n′

i=1(d(u,q′
i )− d̂(u,q′

i ))2

n′ −m − 1

4. If we want probabilities for the k -NN queries, also store the
estimated search radius for each k .

(Detail glossed over in this presentation: we exclude u from the
training queries used to fit its own model.)



Distance estimates as promise values

d̂(u,q) = β̂〈u,0〉 +
m∑

i=1

β̂〈u,i〉d(q,pi)



Probability-based promise values

r − d̂(u,q)

σ̂u

I Depends on a lot of assumptions.
I We also ignore the consequence of excluding u from its

own training queries.



Storage costs

With n objects to index and m pivots,
I For distance estimates: n(m + 1) coefficients. (Can be

discretized at the cost of some accuracy.)
I For probabilities: 2n + 2 additional values.

I Permutation-based index: nmdlog2(m)e bits in total.



Index building costs

With n objects to index, m pivots and n′ training queries,
I Regression-based scheme: n′(n + m) distance calculations

plus the solution of n linear regression problems.
I Permutation-based scheme: nm distance calculations, plus

some sorting.



Experimental setup

I We borrowed the experimental setup from Chávez,
Figueroa & Navarro’s evaluation of the permutation-based
scheme.

I Pivots selected randomly.
I Also evaluated versions with pivot set reduced to make

storage cost equal to permutation-based index.
I Both synthetic and real-world data sets, but results on

real-world data may have more validity.



Evaluating promise value functions:
computation / accuracy trade-offs

Computation cost (%)

S
ea

rc
h

ac
cu

ra
cy

(%
)

Perfect orderings
Hypothetical A
Hypothetical B

Random orderings

(Average over many queries.)



Results on normalized edit distance (NED)

10−1 100 101 102
0

50

100

% of max dist. calc.

%
re

tr
ie

ve
d

(a) 32 pivots

10−1 100 101 102

20

40

60

80

100

% of max dist. calc.

%
re

tr
ie

ve
d

(b) 128 pivots

Permutations Distance estimates (16 bits unfair)
Probabilities (16 bits unfair) Distance estimates (16 bits fair)

Distance estimates (12 bits fair)



Results on documents (TREC)

100 101 102

40

60

80

100

% of max dist. calc.

%
re

tr
ie

ve
d

(a) Range-queries

0 0.1 0.2
0

50

100

wall clock time (seconds)

%
re

tr
ie

ve
d

(b) 5-NN queries

Permutations Distance estimates (16 bits unfair)
Probabilities (16 bits unfair) Distance estimates (16 bits fair)

Distance estimates (12 bits fair)



Results on face images (FERET)

0 10 20
0

0.1

0.2

k%
of

m
ax

di
st

an
ce

ca
lc

ul
at

io
ns (a)

0 10 20

1

2

3
·10−3

k

w
al

lc
lo

ck
tim

e
(s

ec
on

ds
) (b)

Permutations Distance estimates (16 bits unfair)
Probabilities (16 bits unfair) Distance estimates (16 bits fair)

Distance estimates (12 bits fair)



Why were the probability-based promise values sometimes
worse, and never better, than the distance estimates?



Conclusion

Regression-based scheme show some promise, but:
I Takes a lot of time to build the index.
I Vulnerable to deviation from assumptions.


