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The problem

Our task: Speed up proximity search in cases where:
I Distance calculation is expensive.
I Distance-based indexing is needed, because the contents

of the data objects cannot be used in the index.
I Some search inexactness is acceptable, meaning we are

allowed to trade som search accuracy in return for reduced
search computation cost.

Our contribution: A new indexing scheme that in some cases
provides better computation / accuracy trade-offs than the
competition. It also has some draw-backs.



Related work

E. Chávez, K. Figueroa, and G. Navarro.
Effective proximity retrieval by ordering permutations.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(9):1647–1658, 2008.

Takeaway:
I How to perform inexact search by ordering the database

according to promise value function.
I A specific promise value function, which we use as a

baseline in our experiments.
I Experimental setup.



Pivot space

Pivot set:
P = (p1,p2, . . . ,pm)

Mapping object o to pivot space.

Φ(o) = (d(o,p1),d(o,p2), . . . ,d(o,pm))



The baseline: Permutation based promise values

The promise value for indexed object u with respect to query q
is the correlation (rank correlation coefficient, Spearman’s ρ)
between the ordering permutation of Φ(u) and that of Φ(q).



What makes a good promise value function?



Two ideas for promise value functions

Distance estimate
d̂(u,q)

Probability of inclusion

Pr(d(u,q) ≤ r)



Uncertainty in distance estimates

d̂(u,q)
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Should red or blue object be visited first?
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Should red or blue object be visited first?
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Linear model of distance for indexed object u

d(u,q) = β〈u,0〉 +
m∑

i=1

β〈u,i〉d(q,pi) + εu ,



Regression-based index (one model per object!)

With n objects to index and m pivots, an n × (m + 1) matrix:
β̂〈u1,0〉, β̂〈u1,1〉, . . . , β̂〈u1,m〉
β̂〈u2,0〉, β̂〈u2,1〉, . . . , β̂〈u2,m〉

. . .

β̂〈un,0〉, β̂〈un,1〉, . . . , β̂〈un,m〉



I The coefficients can be discretized to save space.
I Plus 2n + 2 additional values if we want probabilities.



Building the index

1. Select n′ training queries from the objects to be indexed.
2. For each training query q′, calculate Φ(q′) .
3. For each object to be indexed u:

3.1 For each training query q′, calculate d(u,q′).
3.2 Solve the least squares linear regression problem to find

the m + 1 coefficients βu.
3.3 Store the coefficients in the index.
3.4 If we want probabilities, also store σ̂u, the estimated

standard deviation of εu:

σ̂u =

√∑n′

i=1(d(u,q′
i )− d̂(u,q′

i ))2

n′ −m − 1

4. If we want probabilities for the k -NN queries, also store the
estimated search radius for each k .

(Detail glossed over in this presentation: we exclude u from the
training queries used to fit its own model.)



Distance estimates as promise values

d̂(u,q) = β̂〈u,0〉 +
m∑

i=1

β̂〈u,i〉d(q,pi)



Probability-based promise values

r − d̂(u,q)

σ̂u

I Depends on a lot of assumptions.
I We also ignore the consequence of excluding u from its

own training queries.



Storage costs

With n objects to index and m pivots,
I For distance estimates: n(m + 1) coefficients. (Can be

discretized at the cost of some accuracy.)
I For probabilities: 2n + 2 additional values.

I Permutation-based index: nmdlog2(m)e bits in total.



Index building costs

With n objects to index, m pivots and n′ training queries,
I Regression-based scheme: n′(n + m) distance calculations

plus the solution of n linear regression problems.
I Permutation-based scheme: nm distance calculations, plus

some sorting.



Experimental setup

I We borrowed the experimental setup from Chávez,
Figueroa & Navarro’s evaluation of the permutation-based
scheme.

I Pivots selected randomly.
I Also evaluated versions with pivot set reduced to make

storage cost equal to permutation-based index.
I Both synthetic and real-world data sets, but results on

real-world data may have more validity.



Evaluating promise value functions:
computation / accuracy trade-offs

Computation cost (%)
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Perfect orderings
Hypothetical A
Hypothetical B

Random orderings

(Average over many queries.)



Results on normalized edit distance (NED)
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Results on documents (TREC)
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Results on face images (FERET)
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Why were the probability-based promise values sometimes
worse, and never better, than the distance estimates?



Conclusion

Regression-based scheme show some promise, but:
I Takes a lot of time to build the index.
I Vulnerable to deviation from assumptions.


