kNN Based Image Classification Relying on Local Feature Similarity

3 logic

ALINARI 鶭 340 DBB

VISITC

Hyperborea

ISTI-CNR, Pisa fabrizio.falchi@isti.cnr.it

- 1. VISITO Tuscany Project
 - exp. landmarks recognition

2. Single-label distance weighted k-NN classifier

- based on image-to-image distance function
- used as a baseline

3. 4 novel classifiers based on NN search local features

- two steps classification process:
 - 1. local feature classification
 - 2. image classification

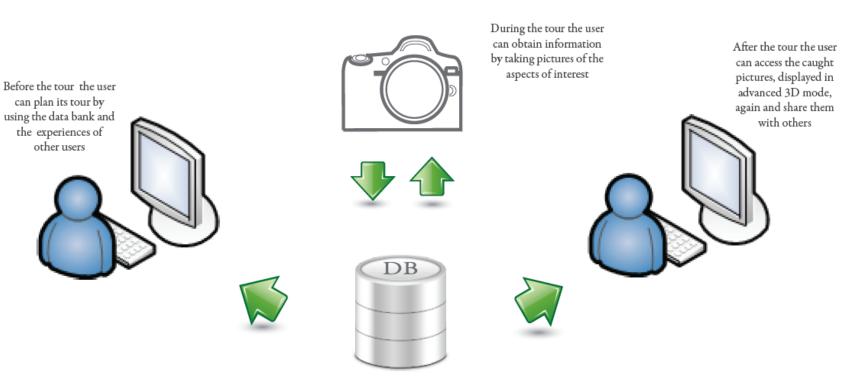
4. Experimental results

- Started: October 2009 (24 months)
 - helping tourists visiting art cities
 - a geo-referenced interactive guide on sparthphones and Internet
 - image-based interaction trough images (pictures as queries)
 - management of very large image archives
 - offering functionalities to professional users too

The basic idea (1)

During the visit

Before



After

The basic idea (2)

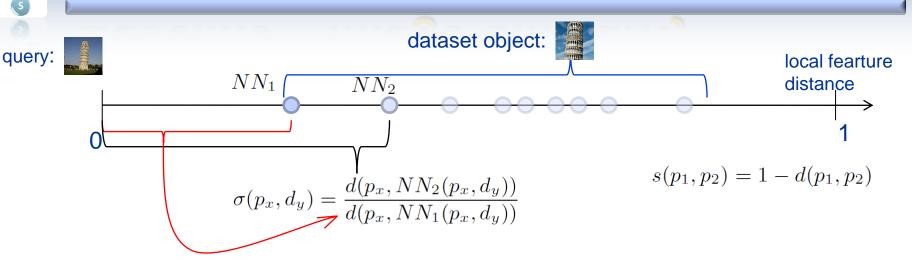
During the visit

- Automatic localization of the user and user interest
 - analyzing pictures taken by the user
- Personalized touristic information is then sent to the user
 - Web pages, phone calls, ...

Pre-visit and post-visit:

- Virtual visit to interesting places using images and 3D models
- Possibility of obtaining information to plan the real visit

Baseline – Image Similarity



- Image Similarity based on Local Features
 - local features matching [Lowe 2001]

$$m(p_x, d_y) = \begin{cases} 1 & \text{if } \sigma(p_x, d_y) < c \\ 0 & \text{otherwise} \end{cases}$$

image similarity measure

$$s^{m}(d_{x}, d_{y}) = \frac{1}{|d_{x}|} \sum_{p_{x} \in d_{x}} m(p_{x}, d_{y})$$

Distance Ratio Threshold

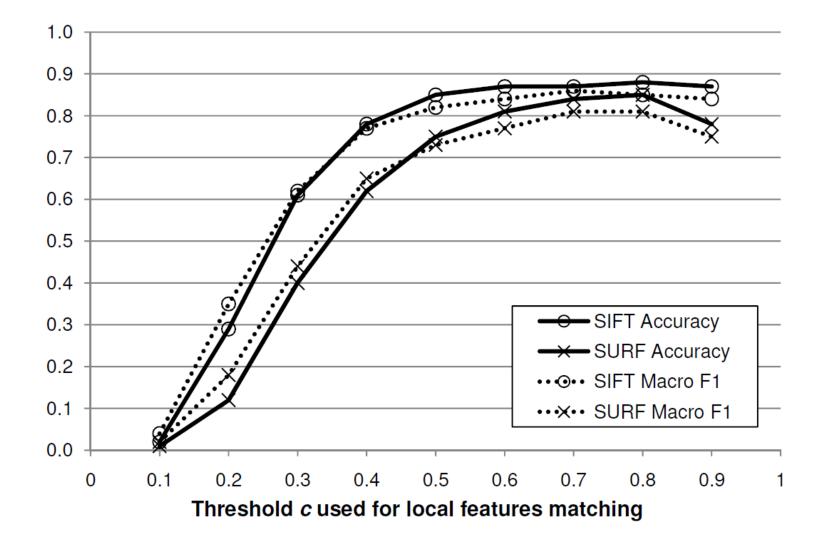
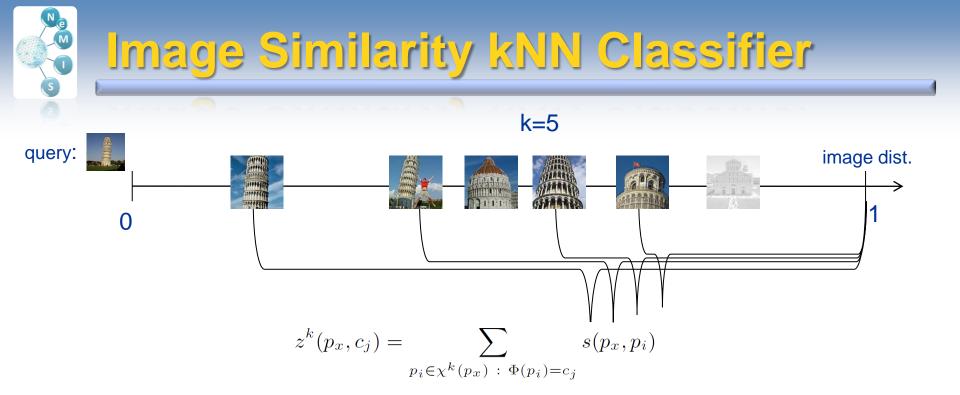


Image similarity based classifier

- single-label distance weighted k-NN:
 - a set of classes $C = \{c_1, ..., c_m\}$, each associated with a training set of images
 - a similarity function $s(d_x, d_y)$ is defined for any two images d_x and d_i
- Given a test image d_x , a label from C is associated:
 - 1. k-NN seach in the training set using d_x as query
 - 2. the label is chosen by maximizing the sum of the similarity between d_x and the kNN search results:

$$z(d_x, c_j) = \sum_{d_i \in \chi^k(d_x) : \Phi(d_i) = c_j} s(d_x, d_i)$$

 $\hat{\Phi}^s(d_x) = \arg\max_{c_j \in C} z(d_x, c_j)$

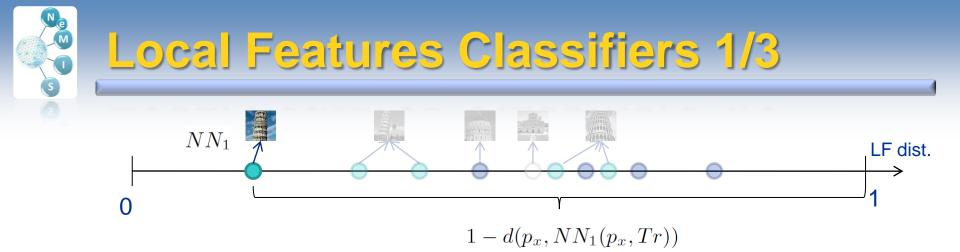


• predicted class label:

$$\hat{\Phi}^s(d_x) = \arg\max_{c_j \in C} z(d_x, c_j)$$

• confidence:

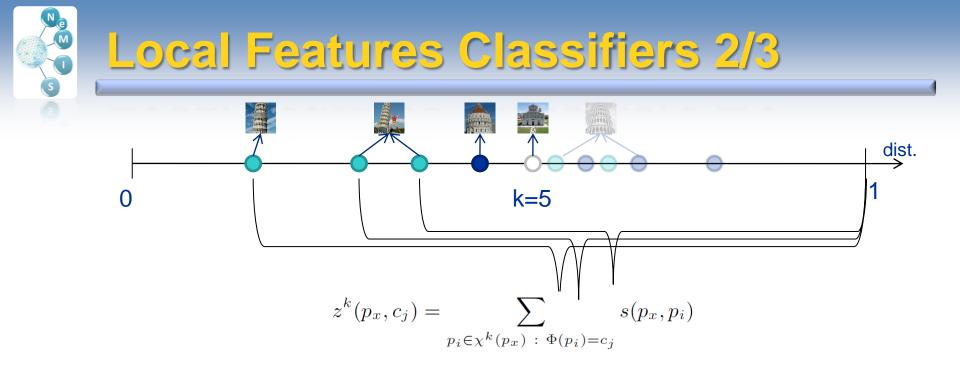
$$\nu_{doc}(\hat{\Phi}^s, d_x) = 1 - \frac{\arg \max_{\substack{c_j \in C - \hat{\Phi}^s(d_x)}} z(d_x, c_j)}{\arg \max_{c_j \in C} z(d_x, c_j)}$$



- We are now comparing the query local features with "all" the local features in the training set.
- LFs are labeled as the image in Tr they belong to
- LFs belonging to images with the same label have the same color

1-NN LF Classifier

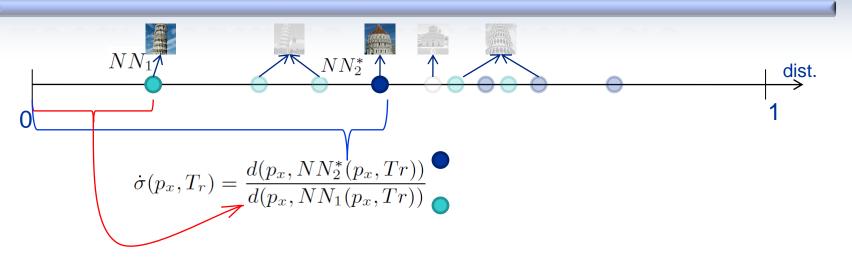
$$\begin{cases} \hat{\Phi}^f(p_x) = \Phi(NN_1(p_x, Tr)).\\ \nu(\hat{\Phi}^f, p_x) = 1 - d(p_x, NN_1(p_x, Tr)) \end{cases}$$



Weighted kNN LF Classifier

$$\begin{pmatrix}
\hat{\Phi}^{k}(p_{x}) = \arg \max_{c_{j} \in C} z^{k}(p_{x}, c_{j}) \\
\nu(\hat{\Phi}^{k}, p_{x}) = 1 - \frac{\arg \max_{c_{j} \in C - \hat{\Phi}^{k}(p_{x})} z^{k}(p_{x}, c_{j})}{\arg \max_{c_{i} \in C} z^{k}(p_{x}, c_{i})}
\end{cases}$$

Local Features Classifiers 3/3



LF Matching Classifier

$$\hat{\Phi}^{m}(p_{x}) = \Phi(NN_{1}(p_{x}, Tr))$$

$$\nu(\hat{\Phi}^{m}, p_{x}) = \begin{cases} 1 & \text{if } \dot{\sigma}(p_{x}, t_{r}) < c \\ 0 & \text{otherwise} \end{cases}$$

Weighted LF Distance Ratio Classifier

$$\begin{cases} \hat{\Phi}^w(p_x) = \Phi(NN_1(p_x, Tr)) \\ \nu(\hat{\Phi}^w, p_x) = (1 - \dot{\sigma}(p_x, t_r))^2 \end{cases}$$

Class Label evaluation

$$z(d_x, c_i) = \sum_{p_x \in d_x, \hat{\Phi}(p_x) = c_i} \nu(\hat{\Phi}, p_x)$$

• Predicted Class Label

$$\hat{\Phi}(d_x) = \arg\max_{c_j \in C} z(d_x, c_j)$$

• Whole Image Classifiaction Confidence

$$\nu_{img}(\hat{\Phi}, d_x) = 1 - \frac{\arg \max_{\substack{c_j \in C - \hat{\Phi}(p_x) \\ \arg \max_{c_i \in C} z(d_x, c_i)}} z(d_x, c_j)}{\arg \max_{c_i \in C} z(d_x, c_i)}$$

Classification Task

- We created a dataset composed of 1227 image of artifacts in Pisa
 - <u>http://www.fabriziofalchi.it/pisaDataset/</u>
- Contains images related to the following artifacts
 - Leaning Tower (119 pictures)
 - Duomo (130 pictures)
 - Baptistery (104 pictures)
 - Monumental Cemetery Exterior (46 pictures)
 - Monumental Cemetery Field (113 pictures)
 - Monumental Cemetery Portico (138 pictures)
 - Chiesa della Spina (112 pictures)
 - Palazzo della carovana (101 pictures)
 - Palazzo dell'orologio (92 pictures)
 - Guelph Tower Cittadella (71 pictures)
 - Basilica di San Piero (48 pictures)
 - Certosa di Calci (53 pictures)
- Task: associating images in the above classes

Pisa-Dataset

Pisa-Dataset

Pisa-Dataset

- Dataset partitioned in:
 - 20% Training Set
 - 80% Test Set
- Performance measures
 - Recall: TP / (TP+FN)
 - **Precision**: TP / (TP+FP)
 - **F**₁: harmonic mean between Recall and Precision
 - Micro-averaged Accuracy
 - equals micro-averaged Recall, Precision and F₁ in case of single-label classification

best baseline

	classifier	$\hat{\Phi}^{f}$	$\hat{\Phi}^{1}$	$\hat{\Phi}^{5}$	$\hat{\Phi}^{-10}$	$\hat{\Phi}^{-25}$	$\hat{\Phi}^{50}$	$\hat{\Phi}^{m}$	$\hat{\Phi}^{W}$	$\hat{\Phi}^{s}$
Accuracy	SIFT	0.901	0.901	0.855	0.818	0.756	0.691	0.945	0.952	0.877
	SURF	0.883	0.881	0.841	0.794	0.714	0.668	0.927	0.928	0.851
F₁ Macro	SIFT	0.806	0.883	0.809	0.748	0.657	0.575	0.940	0.947	0.864
	SURF	0.791	0.866	0.804	0.727	0.606	0.542	0.915	0.922	0.828

- Local feature based classifiers perform better
- NN₁ / NN^{*}₂ distance ratio is relevant
- Weighted approach is better than binary
- Relative efficacy of classifier is the same for both SURF and SIFT
- Good performance of local features based classifiers relying on only 1-NN search betwen local features

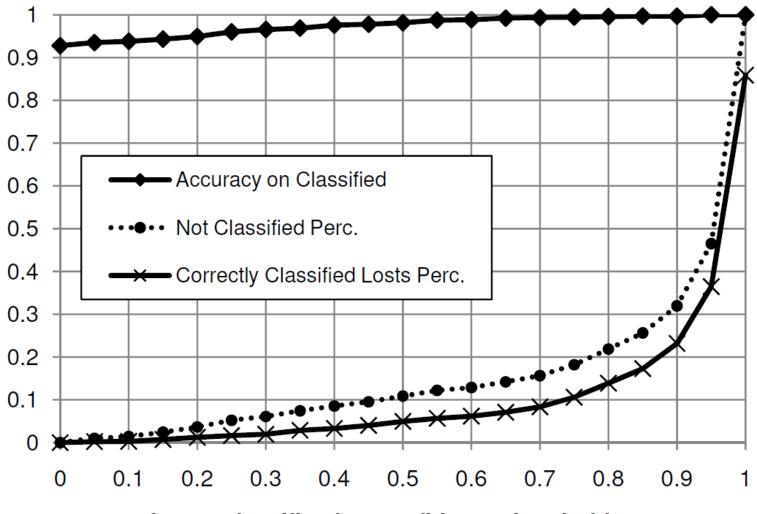


Image classification confidence threshold ving

Conclusions

- Classifying first each local features result in **efficacy** advantage for the overall image classification
- LF based image classification relying on **NN search** over LFs can exploit efficiency advantages of index structure for similarity search given that local features are typically compared using Euclidean distance
- Next step is considering geometric consistency during the whole image classification phase

www.visitotuscany.it

- Android APP: VISITO Tuscany
- Contact:
 - NeMIS Lab, ISTI -CNR
 <u>fabrizio.falchi@isti.cnr.it</u>
 <u>giuseppe.amato@isti.cnr.it</u>