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ﬂl“he Half-Space Proximal (HSP) Graph is a sparse | The HSP Algorithm on a query Q Importz}nce of Exactness: )
proximity graph with a wide array of applications: begins with a list L initialized with \ * Existing approaches are approximate,

* Routing and edge pruning all points in the dataset and missing long range links by constraining

* Instance-based classification iteratively: the HSP algorithm to a local neighborhood.

* Intrinsic dimensionality estimation . ) * The exact HSP Graph is monotonic, a

* Representing chemical networks 1. Finds the next HSP neighbor x; B highly desired property in graph-based

as the closest point to @ in L.
2. Removes point x, € L if both:

d(Ql xl) < d(Ql Xz)

similarity search.
* The t-spanner conjecture of the HSP
Graph requires exactness and leads to its

* Defining a notion of hubness/centrality
The HSP Graph is defined geometrically by the same
inequalities as the Relative Neighborhood Graph

of points.

\ I y Search time (ms) on 1.6M
i uniformly distributed points.

: Dii i Brute Force HSP  Hierarchical HSP Ratio

and its partition: 5 &
(2) safe, or (3) indeterminant.

\(RNG), making it a super-set of linear complexity. d(x1,x2) < d(Q,x2) application as a distance oracle. y
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ﬁl‘he Hierarchical HSP (HHSP) | Nearest Neighbor Search by pivots and the triangle ) (Results on synthetic data shows the em 00 om e 0w )
algorithm leverages a hierarchical | inequality is used to efficiently find HSP neighbors. HHSP  provides orders  of § / /;/f
part1(t110n1rlllg of the dataset t(; Validating Entire Groups of Points | % magnitude §avings over brute force ' / — :
s};l)eeH ;11;)) 2 1e twohcore processes of | 5 time by metric-space inequalities /- i HSP, enabl.mg exact HSP searhcl.l on A ///
the gorithm. establishes three cases for any pivot Q ] datasets with hundreds of millions H —]

000,000

. r . 2 187.516 0016 11.749.51 Search time (ms) on uniformly distributed
?;L?\?;?;j vgﬂg;?;:‘:;ls;sp { d*(Q,p2) — d*(x1,p2) > 2r d(Q, 1) 4 181.696 0.029 620985 |data, scaling to hundreds of millions of points
2 6 132.222 0.045 2,960.31 i i i
neighbor of Q if both: d(Q, -’131) < d(Q, pz) - . ooy 0080 a3 and suggesting experm.lentally sublinear
) k 10 135.353 0.197 686.70 complexity. )




